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Summary. To investigate the evolution of conifer species, 
we constructed a physical map of the chloroplast DNA 
of sugi, Cryptomeria japonica, with four restriction en- 
donucleases, PstI, SalI, SacI and XhoI. The chloroplast 
genome of C. japonica was found to be a circular mole- 
cule with a total size of approximately 133 kb. This mol- 
ecule lacked an inverted repeat. Twenty genes were local- 
ized on the physical map of C. japonica cpDNA by 
Southern hybridization. The chloroplast genome struc- 
ture of C. japonica showed considerable rearrangements 
of the standard genome type found in vascular plants and 
differed markedly from that of tobacco. The difference 
was explicable by one deletion and five inversions. The 
chloroplast genome of C. japonica differed too from that 
of the genus Pinus which also lacks one of the inverted 
repeats. The results indicate that the conifer group origi- 
nated monophyletically from an ancient lineage, and di- 
verged independently after loss of an inverted repeat 
structure. 
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Introduction 

A large number of the chloroplast genomes of an- 
giosperms, ferns, algae, bryophytes and gymnosperms 
have been characterized by physical gene mapping. The 
chloroplast (cp) DNAs of tobacco, liverwort and rice 
have been completely sequenced (Ohyama et al. 1986; 
Shinozaki et al. 1986; Hiratsuka et al. 1989). The chloro- 
plast genomes of all land plants have been shown to exist 
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as a circular chromosome ranging in size from 120 to 
217 kb, although dimeric forms are found (Palmer 1987). 
The cpDNAs of most land plants contain large inverted 
repeats. However, these inverted repeats are lacking in 
one group of legumes (Palmer and Thompson 1982; 
Palmer et al. 1987) and some conifer tree species (Lid- 
holm et al. 1988; Strauss et al. 1988; White 1990a; Lid- 
holm and Gustafsson 1991). 

In gymnosperms, physical maps o f cpDNA have been 
reported for Ginkgo biloba (Palmer and Stein 1986) and 
five conifer species, namely, Pseudotsuga rnenziesii, Pinus 
radiata, P. monticola, P. contorta and P. thunbergii 
(Strauss et al. 1988; White 1990 a; Lidholm and Gustafs- 
son 1991; Tsudzuki et al. 1992). Conifer cpDNAs show 
some unique features compared to the those of other 
plants including: (1) paternal or biparental inheritance 
(Neale et al. 1986; Szmidt et al. 1987; Neale and Sederoff 
1989; Neale etal. 1989; Stine et al. 1989), (2) the lack of 
a large inverted repeat, except for P. thunbergii, and (3) 
intraspecific variation in some pine species (Wagner et al. 
1987; White 1990b; Ali et al. 1991). 

Among gymnosperms, the genus Ginkgo is consid- 
ered to be one of the most ancient having been distribut- 
ed throughout the world some 195-225 million years 
ago. Even so, it should be emphasized that the cpDNA 
structure of G. biloba is similar to that of most land 
plants e.g., petunia or tobacco). The genus Pinus is be- 
lieved to be more recent than Ginkgo and its cpDNA 
structure differs greatly from that of the standard type 
found in land plants (Strauss et al. 1988). Cryptomeria 
japonica belongs to the family Taxodiaceae and is en- 
demic in Japan. The phylogenetic relationships of Cryp- 
torneria are unclear, because genetical markers are great- 
ly limited (Yasue et al. 1987; Tsumura et al. 1989). 

Chloroplast evolution in gymnosperms raises the fol- 
lowing questions: (1) is the loss of the inverted repeat 



Table 1. Size in kbp and number of restriction fragments of C.japonica chloroplast DNA 

No. PstI PstI + SalI SalI PstI + SacI SacI Psti + XhoI XhoI 
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1 36.4 19.6 20.4 17.5 17.8 14.9 
2 23.7 11,0 14.0 13.1 13.1 14.1 
3 18.2 9,4 12.7 9.8 12.3 12.6 
4 14.9 8.7 10.8(2) 9.2 10.8 9,4 
5 8.6 8.2 10.1 7.6(2) 10.0 8.9 
6 7.9 7.7 9.5 6.2 9.1 7.9 
7 6.7 6.8 9.4 6.0 8.8 7.6 
8 4.2 6.3 8.7 4.7 8.5 7.3 
9 2.4(2) 5.1 8.2(2) 4.3(2) 7.7 6.5 

10 2.2 4.9 6.8 3.8 5.9 4.7 
11 1.6 4.5 3.2 3.6(3) 5.8 4.2(3) 
12 1.2 4.2 1.1 3.4(2) 5.5 3.6 
13 1.1 3.8 2.5 3.6 3.6 
14 0.9 3.5 2.4 3.6 3.6 
15 0.8 3.2(2) 1.6(2) 3.2 2.9 
16 0.7 2.9 (2) 1.4 2.5 2.2 (2) 
17 2.4(2) 1.3 1.4 1.6 
18 1.6 1.2 1.3 1.5 
19 1.5 1.1(2) 0.9 1.4 
20 1.2 0.9 0.8 1.3 
21 1.1 0.9 0.5 1.2 
22 1.1 0.7 (2) 1.1 (2) 
23 0.9 0.5 0.9 
24 0.8 0.8 
25 0.8 0.5 
26 0.7 
27 0.5 
28 0.5 

28.2 
19.8 
13.7 
12.6 
9.3 (2) 
8.9 
6.5 
6.2 
5.4 
3.5 
3.4 
2.9 
2.2 
1.3 

Total 133.9 

Mean value 133.0 kbp 

131.4 133.9 132.1 133.1 133.7 133.2 

(IR) commonly found in conifers? and (2) what is the 
arrangement  of the gene order following loss of the IR in 
conifers? In order to address these questions, we have 
constructed a physical map of the cpDNA of  C. japonica, 

and compared its genome structure to that of  other 
conifers and other land plants. F rom an evolutionary 
point  of view, Cryptomeria is interesting. It is considered 
to be one of the most ancient conifer species, having 
diverged from its ancestral group some 24 -65  million 
years ago (Uemura 1981). 

Materials and methods 

Plant material 

Open-pollinated seeds of C. japonica D. Don, collected from an 
individual clone (G-5), were germinated and grown for 3-6  
months in the greenhouse. The needle tissue of these seedlings 
was used for cpDNA extraction. 

Chloroplast DNA isolation and DNA manipulation 

Chloroplast DNA was isolated from needles of C. japonica by 
using a sucrose discontinuous - gradient method (Ogihara and 
Tsumewaki 1982). The cpDNA was digested with four restric- 

tion endonucleases, namely PstI, SalI, SacI and XJ~oI, either 
solely or in a combination of PstI with SaII, SacI or XhoI, 
according to the manufacturer's instruction. The digested 
cpDNA was fractionated by 0,7% agarose-gel electrophoresis in 
TAE buffer (40 mM Tris-HC1, 20 mM sodium acetate and 2 mM 
EDTA, pH 8.0) for estimation of fragment sizes and/or South- 
ern hybridization. Fractionated DNAs were transferred to ny- 
lon membranes (Hybond-N, Amersham Co. Ltd.). 

SalI digests of sugi cpDNA were ligated into pUC 18. Com- 
petent Escherichia coli cells (strain JM109) were transformed 
and grown overnight on an LB agar plate containing IPTG, 
X-gal and 100 iag/ml of ampicillin. Recombinant colonies were 
grown in LB broth and glycerized for storage at -85~ Plas- 
mid DNAs were extracted from 2-ml cultures in LB broth (Birn- 
boim and Dolly 1979), and digested with SalI to check the 
inserts. 

Southern hybridization of sugi cpDNA was carried out with 
homologous and heterologous probes to assign the order of 
restriction fragments of cpDNA. For homologous hybridiza- 
tion, nine sugi Sa/I-digested clones were used. For heterologous 
hybridization, clones of wheat and tobacco cpDNAs were em- 
ployed (Ogihara and Tsunewaki 1982; Sugiura etal. 1986). 
These clones were digested with the appropriate restriction en- 
zymes and inserted fragments were recovered from agarose gels 
after electrophoresis by the glass powder method (Vogelstein 
and Gillespie 1979). DNA fragments corresponding to the cod- 
ing region of the gene were prepared after a computer search of 
restriction sites (GENETYX program, SDC Software Develop- 
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ment Co. Ltd.). The probe DNAs (0.1-0.2 gg) were labeled by 
the digoxygenin non-radioactive labeling method (Boehringer 
Mannheim Co. Ltd.). The nylon membranes were hybridized 
with probes for 18 h in hybridization buffer [5 x SSC, 0.5% 
(w/v) dry skim milk, 0.1% (w/v) N-lauroylsarcosine sodium salt, 
0.02% (w/v) SDS, 50 mg/ml salmon sperm DNA] at 68~ 
Membranes were washed twice in 2x SSC, 0.1% SDS for 
15 min at room temperature and then twice in 0.1 x S SC, 0.1% 
SDS for 15 min at 68~ Immunological detection of the hy- 
bridized fragment was carried out following the protocol of the 
manufacturer (Boehringer Mannheim Co. Ltd.). 

Results 

Restriction endonuclease analysis and genome 
size estimation 

Although conifer cpDNAs sometimes revealed in- 
traspecific variation (Wagner et al. 1987; White 1990 b), 

Fig. 1. Restriction fragment patterns of C.japonica cpDNA 
generated by single digestion with PstI, SalI, SacI and XhoI or 
in combinations with PstI and the other three enzymes (A), and 
their Southern hybridization pattern with the S9b of sugi 
cpDNA as a probe (B). Lanes 1, PstI; 2, PstI and SalI; 3, SaII; 
4, PstI and Sad; 5, SacI; 6, PstI and XhoI; 7, XhoI 

cpDNA patterns isolated from different clones of sugi 
were identical with each other (data not shown). 

The restriction fragment patterns of C. japonica 
cpDNA digested with PstI, SaII, SacI and XhoI, either 
solely or in combinations of two enzymes, are shown in 
Fig. 1. Chloroplast genome size was estimated to range 
from 131.1 (SacI) to 133.9 (PstI) kbp (mean of 133 kbp), 
based on the molecular sizes of individual restriction 
fragments and their copy number (Table 1). This genome 
size is in the range of gymnosperm cpDNAs. That of G. 
biloba is 141 kbp when one of inverted repeats (17 kbp) 
is omitted from the genome of 158 kbp (Palmer and Stein 
1986). Other coniferous species have a cpDNA size of 
120 and 121 kbp (Strauss et al. 1988; White 1990a; Lid- 
holm and Gustafsson 1991; Tsudzuki et al. 1992). 

Construction of  a physical map and mapping 
of photosynthesis-related genes 

The recognition sites of four restriction endonucleases 
were estimated by the fragment patterns produced by 
single and double digestions of  cpDNA, as presented in 
Table 1. The restriction fragment orders were confirmed 
by homologous hybridization with cloned sugi cpDNA 
fragments used as probes (Table 2). The fragment orders 
of  sugi cpDNA were compared to those of tobacco (Sug- 
iura et al. 1986) and wheat (Ogihara and Tsunewaki 
1988). Mapping data (Fig. 2) show that the cpDNA of C. 
japonica lacks an inverted repeat and that the fragment 
order is highly rearranged in comparison to that of the 
standard type of angiosperm such as petunia and mung 
bean (Palmer and Stein 1986). Southern hybridization 
patterns with cloned DNAs of wheat cpDNA, which 
harbors three major inversions compared to tobacco 
cpDNA (Howe et al. 1988), were so complicated that 
some of them were not completely traced (data not 
shown). Twenty photosynthesis-related genes (Table 3) 
have been localized on the physical map to allow a pre- 
cise comparison of the chloroplast genome structure be- 
tween angiosperms and conifers. Gene-mapping data 
confirm that, like other conifers, the chloroplast genome 
of C. japonica lacks one of the inverted repeats (Strauss 
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Fig. 2. Physical map of C.japoniea 
in a linear form showing restriction 
sites of the four endonucleases PstI, 
SalI, SacI and XhoI, and the loca- 
tion of 20 photosynthesis-related 
genes. The circular DNA has been 
opened at the SalI site between $1 
(20.4 kbp) and S9a (8.2 kbp) 
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Table 2. The cpDNA fragments of sugi hybridized with homologous ($5 to $12) and heterologous (pTBal and pTB10) probes 

Probe (kb) 
DNA fragment 

Restriction enzyme used for digestion 

PstI PstI/SalI SalI PstI/SacI SacI PstI/XhoI XhoI 

$5(10.1) PI PS8 $5 
P3 PS18 
P13 PS21 
P14 PS22 

S7 (9.4) P1 PS3 S7 
PS15 

$8 (8.7) P1 PS4 $8 

$9a(8.2) P2 PS9 S9a 
P7 PS16 

S9b (8.2) P3 PS5 S9b 

$10(6.8) P1 PS7 $10 

Sll  (3.2) P3 PS3 $I1 
PS15 

$3 (12.7) P1 NT" $3 
P7 
PI5 
P16 

$12(1.1) P10 NT $12 

pTBal (19.6) P4 NT $2 
P5 S4b 
P9b 

pTB10 (approximately 9.6) P2 NT SI 
$9 

PSc6 Sc8 PXI X2 
PSc21 Sc14 PX5 X6 
PSc22 PX/2 

PX21 
PX22 

PSc5 Sc7 PX4 X3 
PSc8 Sc9 PX8 X5b 
PScl 3 Scl 6 PX13 X11 
PSc2 Sc2 PX5 X6 

Sc14 PX15 X13 
PScl Scl PX7 X5a 

PX14 X12 
PSc3 Sc5 PX2 X2 
PScll Sc13 
PSc2 Sc2 PX4 X5b 
PScl3 Sc16 
PSc3 Sc5 PX2 X2 
PSc5 PX13 X10 
NT SC7 NT X2 

Sc12 
Scl 5 

NT Scl 8 NT XI 

NT Sc3 NT XI 
Sc6 X8 
Scl 1 X10 

NT Scl NT X5a 

a NT, not tested 

Table 3. Southern hybridizations of the cpDNA of C. japonica with gene probes 

Gene probe Plant 
source 

Probes for gene mapping 

Clone, R.E., Frag.size 

Hybridized fragments 

PstI SalI Sad J(hoI 

psaA Tobacco 
psaB Tobacco 
psbA Tobacco 
psbC, D Tobacco 
psbE, F Tobacco 
atpA Tobacco 
atpB,E Tobacco 

atpH Tobacco 
atpI Tobacco 
petA Tobacco 
rpl2 Tobacco 
rpll6 Tobacco 
rpo B Tobacco 
rpoC Tobacco 
rbcL Wheat 

16s rDNA Tobacco 

23s rDNA Tobacco 

pTX9, BamHI, 2.5 kb 
pTB30, EcoRI + BamHI, 2.04 kb 
pTB28, XbaI + PstI, 0.7 kb 
pTB30, NcoI, 1.7 kb 
pTS9, SacI + EeoRV, 1.1 kb 
pTb25, SalI+SmaI, 1.55 kb 
pTS6, SmaI + PvuII, 1.4 kb 

pTB25, NruI, 0.7 kb 
pTB25, NcoI + ScaI, 0.7 kb 
pTS6, NruI +SaII, 1.0 bp 
pTB28, PstI + HindIII, 0.6 kb 
pTS10, BamHI+XbaI, 1.35 kb 
pTB7, NcoI +SalI, 1.7 kb 
pTB7, BamHI + HindIII, 3.0 kb 
B2, NruI + PstI, 1.2 kb 

pTB8, SphI +NruI, 1.2 kb 

pTB8, XhoI, 0.6 kb 

P3 S9b 
P3 S9b 
P9a S4a 
PI $8 
P4 S4b 
P9a S4a 
P6 $6 

P1 $10 
P1 $10 
P5 $2 
P1 $10 
P1 $10 
P1 $8 
P1 $8 
P4 $6 
P12 
P2 S9a 
P7 
P7 $3 

Sc5 X2 
Sc13 X2 
Sc4 X9 
Sc2 X6 
Sc6 X1 
Sc4 X9 
Sc4 X1 
Scl0 
Sc2 X5b 
Sc2 X5b 
Scl 1 X8 
Scl 6 X5b 
Sc2 X5b 
Sc2 X6 
Sc2 X6 
Scl0 X1 

Scl X5a 
Sc17 X12 
Sc12 X14 
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Fig. 3. A comparison of the gene order between tobacco and sugi cpDNAs and the hypothesized deletion and inversions involved 
in the evolution of the C. japonica chloroplast genome from a tobacco-like ancestral genome 
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(Pinus r a d i a t a ,  P .mont icola ,  
P . con t r t a ,  Pseudotsuga menz ies i i )  

Fig. 4. Putative hypothesis of the cpDNA 
evolution of conifer species. Step 1, dele- 
tion of part of a repeat sequence; step 2, 
deletion of one of the inverted repeats; 
step 3, various inversions occurring during 
the differentiation of each family 

et al. 1988; White 1990a; Lidholm and Gustafsson 1991) 
and is highly rearranged in comparison to other conifers. 
Allowing for only deletion and inversion, six events (one 
deletion and five inversions) are required to trace the 
cpDNA of C. japonica back to the ancestral type (Fig. 3). 
The sequence of these events as inferred from the gene 
order, is as follows: (1) loss of the large inverted repeat 
occurred first; (2) a large inversion took place between 
the atpH, I and psbEE genes; (3) then, successively, four 
small inversions occurred; namely, between psbA and 
atpE, B, atpE, B and psbE, F, psbE, F and petA, and the 16 
and 23 rDNAs. 

Discussion 

The present results show that the cpDNA of C. japonica 
lacks a large inverted repeat and has been considerably 
rearranged in comparison to that of the standard type 
cpDNA present in petunia and mung bean (Palmer and 
Stein 1986). The cpDNA of sugi also differs from that of 
pine in terms of genome size and gene order, although 
pine too lacks an inverted repeat (Strauss et al. 1988). It 
is well known that the genome structure of chloroplast 
DNA is highly conserved among different plant species 
(Palmer 1987). In fact, a basic structure of the cpDNA 
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genome is maintained in most  plants, including green 
algae, mosses, and vascular plants (Palmer and Stein 
1986; Palmer 1987). This conservatism of  c p D N A  has 
been confirmed by D N A  sequencing of  the entire genome 
in liverwort, tobacco and rice (Ohyama etal.  1986; 
Shinozaki et al. 1986; Hiratsuka et al. 1989). According- 
ly, drastic changes in the chloroplast genome, such as the 
loss of  large inverted repeats, deletions, inversions and 
translocations, are considered to be exceptional events in 
the lineage of  plant differentiation (Palmer et al. 1988). 
These genome alternations are found at various taxo- 
nomic levels, e.g., species, genus, family and higher or- 
ders. As for the deletion of  a large inverted repeat in 
cpDNA,  two examples have been reported involving one 
group of  legumes (Palmer and Thompson 1982) and 
some conifer trees belonging to the Pinaceae (Lidholm 
et al. 1988; Strauss et al. 1988; White 1990a; Lidholm 
and Gustafsson 1991). On the other hand, primitive and 
ancient Ginkgo, whose relatives are considered to be the 
ancestors of  conifers (Doyle and Donoghue  1986), main- 
tains two large inverted repeats (17 kbp) and the same 
gene order as that of  the standard type c p D N A  (Palmer 
and Stein 1986). Structural alternations of  the chloro- 
plast genomes of  conifers can be traced from the stan- 
dard type of  vascular plant cpDNA.  In the Pinaceae, the 
c p D N A  genome type of  P. radiata can be derived from 
the standard type by six mutations: two deletions and 
four inversions (Strauss et al. 1988). The cpDNAs  of  P. 
monticola (White 1990 a) and P. contorta (Lidholm and 
Gustafsson 1991) have a similar structure to that of  radi- 
ata pine while that of  P. menziesii harbors one additional 
inversion to those of  radiata pine (Strauss et al. 1988). Six 
mutational events, one deletion and five inversions, from 
the standard c p D N A  type are required to produce that of  
C. japonica. But, when the gene order of  C. japonica 
c p D N A  is compared with that of  Pinus radiata, the ge- 
home structures suggest independent changes so that no 
simple evolutionary path can be determined. These lines 
of  evidence strongly suggest that loss of  a large inverted 
repeat occurred at the time of  the differentiation of  conif- 
erous plant(s) from other gymnosperms some 300 million 
years ago (Doyle and Donoghue  1986). Subsequent to 
this event the c p D N A  genome of  coniferous plants has 
diverged independently. 
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